distance_correlation_t_test#
- distance_correlation_t_test(x, y)[source]#
Test of independence for high dimension.
It is based on convergence to a Student t distribution. The null hypothesis is that the two random vectors are independent.
- Parameters
x (Array) – First random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector.
y (Array) – Second random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector.
- Returns
Results of the hypothesis test.
- Return type
HypothesisTest[Array]
See also
distance_correlation_t_statistic
Examples
>>> import numpy as np >>> import dcor >>> a = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16]]) >>> b = np.array([[1, 0, 0, 1], ... [0, 1, 1, 1], ... [1, 1, 1, 1], ... [1, 1, 0, 1]]) >>> with np.errstate(divide='ignore'): ... dcor.independence.distance_correlation_t_test(a, a) ... HypothesisTest(pvalue=0.0, statistic=inf) >>> dcor.independence.distance_correlation_t_test(a, b) ... HypothesisTest(pvalue=0.6327451..., statistic=-0.4430164...) >>> with np.errstate(divide='ignore'): ... dcor.independence.distance_correlation_t_test(b, b) ... HypothesisTest(pvalue=0.0, statistic=inf)