distance_covariance_test#
- distance_covariance_test(x, y, *, num_resamples=0, exponent=1, random_state=None, n_jobs=1)[source]#
Test of distance covariance independence.
Compute the test of independence based on the distance covariance, for two random vectors.
The test is a permutation test where the null hypothesis is that the two random vectors are independent.
- Parameters
x (Array) – First random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector.
y (Array) – Second random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector.
exponent (float) – Exponent of the Euclidean distance, in the range \((0, 2)\). Equivalently, it is twice the Hurst parameter of fractional Brownian motion.
num_resamples (int) – Number of permutations resamples to take in the permutation test.
random_state (Optional[Union[RandomState, Generator, int]]) – Random state to generate the permutations.
n_jobs (int) – Number of jobs executed in parallel by Joblib.
- Returns
Results of the hypothesis test.
- Return type
HypothesisTest[Array]
See also
distance_covariance
Examples
>>> import numpy as np >>> import dcor >>> a = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16]]) >>> b = np.array([[1, 0, 0, 1], ... [0, 1, 1, 1], ... [1, 1, 1, 1], ... [1, 1, 0, 1]]) >>> dcor.independence.distance_covariance_test(a, a) HypothesisTest(pvalue=1.0, statistic=208.0) >>> dcor.independence.distance_covariance_test(a, b) ... HypothesisTest(pvalue=1.0, statistic=11.75323056...) >>> dcor.independence.distance_covariance_test(b, b) HypothesisTest(pvalue=1.0, statistic=1.3604610...) >>> dcor.independence.distance_covariance_test(a, b, ... num_resamples=5, random_state=0) HypothesisTest(pvalue=0.8333333333333334, statistic=11.7532305...) >>> dcor.independence.distance_covariance_test(a, b, ... num_resamples=5, random_state=13) HypothesisTest(pvalue=0.5..., statistic=11.7532305...) >>> dcor.independence.distance_covariance_test(a, a, ... num_resamples=7, random_state=0) HypothesisTest(pvalue=0.125, statistic=208.0)
Examples using dcor.independence.distance_covariance_test
#
The distance covariance test of independence